
Page 1 of 15

ANNA UNIVERSITY

NON-AUTONOMOUS COLLEGE

AFFILIATED TO ANNA UNIVERSITY

M.E., EMBEDDED SYSTEM TECHNOLOGIES

REGULATIONS 2025

PROGRAMME OUTCOMES (POs)

PO1
An ability to independently carry out research / investigation and

development work to solve practical problems.

PO2 An ability to write and present a substantial technical report / document.

PO3
Students should be able to demonstrate a degree of mastery in embedded

system technologies.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1 Graduates will be proficient in integrating hardware, software, and

networking technologies to deliver optimized embedded solutions.

PSO2 Graduates will be able to apply advanced embedded system technologies

to drive research, foster innovation, and support product development.

Page 2 of 15

 ANNA UNIVERSITY, CHENNAI

POST GRADUATE CURRICULUM (NON.AUTONOMOUS AFFILIATED INSTITUTIONS)

 Programme: M.E., Embedded System Technologies Regulations: 2025

Abbreviations:

BS – Basic Science (Mathematics,

Physics,

 Chemistry)

L – Laboratory Course

ES – Engineering Science (General (G),

 Programme Core (PC), Programme

 Elective (PE))

T – Theory

SD – Skill Development LIT – Laboratory Integrated Theory

SL – Self Learning PW – Project Work

OE – Open Elective
TCP – Total Contact Period(s)

Semester I

S.

No.

Course

 code
Course title

Type

Periods

per week

TCP
Credits Category

L T P

1. ET25101 Design of Embedded

Systems
T 3 0 0 3 3 ES (PC)

2. ET25102 Programming Embedded

Systems
LIT 3 0 2 5 4 ES (PC)

3. ET25103 Microcontroller Based

System Design
T 3 0 0 3 3 ES (PC)

4. ET25C01 IoT for Smart Systems T 3 0 0 3 3 ES (PC)

5. ET25104 VLSI Design and

Reconfigurable Architecture
T 3 1 0 4 4 ES (PC)

6. ET25105
Technical Seminar - 0 0 2 2 1 SD

Total Credits 20 18

Page 3 of 15

Semester II

S.

No.

 Course

 Code

Course title

 Type

Periods

Per Week

TCP

Credits

Category

L T P

1. Real Time Operating

System

T 3 1 0 4 4 ES (PC)

2. Embedded System

Networking

T 3 0 0 3 3 ES (PC)

3. Embedded Control

System

T 3 1 0 4 4 ES (PC)

4. Programme Elective - I T 3 0 0 3 3 ES (PC)

5. Industry Oriented Course I -- 1 0 0 1 1 SD

6. Embedded System

Laboratory – I

L 0 0 4 4 2 ES (PC)

7. Industrial Training -- -- -- -- -- 2 SD

8. Self Learning Course -- -- - -- -- 1 SD

Total Credits 19 20

Semester III

S.

No.

Course

code

Course Title

Type

Periods

Per Week

TCP

Credits

Category

L T P

1. Programme Elective II T 3 0 0 3 3 ES (PE)

2. Programme Elective III T 3 0 0 3 3 ES (PE)

3. Programme Elective IV T 3 0 0 3 3 ES (PE)

4. Open Elective --- 3 0 0 3 3 -

5. Industry Oriented

Course II

-- 1 0 0 1 1 SD

6. Project Work I --- 0 0 12 12 6 SD

Total Credits 25 19

Semester IV

S.

NO.

Course

Code

Course Title

Type

Periods

Per Week

TCP

Credits

Category

L T P

1. Project Work II --- 0 0 24 24 12 SD

Total Credits 24 12

Page 4 of 15

Programme Elective Courses (PE)

S.

No.

Course

code

Course title

Periods

Per week

Total

Contact

Periods

Credits

L T P

1. Wireless And Mobile

Communication

3 0 0
3 3

2. Data Driven Embedded

Systems

3 0 0
3 3

3. Advanced Embedded

Processor

3 0 0
3 3

4. DSP Based System Design 3 0 0 3 3

5. Automotive Embedded

System

3 0 0 3 3

6. Embedded Linux 3 0 0 3 3

7. Autonomous Vehicle 3 0 0 3 3

8. Computer Vision 3 0 0 3 3

9. Digital Twin 3 0 0 3 3

10. Machine Learning and Deep

Learning

3 0 0 3 3

11. Wireless Sensor Networks 3 0 0 3 3

12. Embedded Computing 3 0 0 3 3

13. Embedded Systems Security 3 0 0 3 3

14. Robotics and Automation 3 0 0 3 3

15. Reconfigurable Processor

and SoC Design

3 0 0 3 3

16. MEMS and NEMS

Technology

3 0 0 3 3

17. Embedded System for Bio

Medical Applications

3 0 0 3 3

18. Electric vehicle and power

management.

3 0 0 3 3

19. Edge Data Analytics 3 0 0 3 3

20. Python Programming for

Machine Learning

3 0 0 3 3

21. Embedded Device Driver

Programming

3 0 0 3 3

Page 5 of 15

Semester I

Page 6 of 15

ET25101 Design of Embedded Systems L T P C

3 0 0 3

Course objectives:

 Understand embedded architectures, components, and communication

protocols.

 Analyze real-time requirements and hardware/software co-design

approaches.

 Design and develop embedded applications using modeling tools and EDLC

frameworks.

Introduction to Embedded Systems: Features of embedded systems, processor

selection, memory organization, timers, watchdogs, and RTC. Development tools

(IDE, assembler, linker, debugger, emulator) and basics of functional safety

standards.

Activities: Install, configure, and create a simple project with a basic IDE to learn

project structure.

Communication Protocols: I/O ports, buses, interrupts, and service mechanisms.

Serial protocols (RS232, RS485-MODBUS, USB, I2C, CAN) and wireless protocols

(Wi-Fi, Bluetooth, ZigBee). Introduction to device drivers.

Activities: Write a pseudo-code or library examples of initializing and using a

peripheral (LED, LCD, sensor)

Real Time Systems: Structure and characteristics of real-time systems, run-time

estimation, task scheduling, and performance measures. Fault tolerance, reliability,

evaluation methods, and clock synchronization.

Activities: Design a simple traffic light controller or temperature monitoring system

with periodic tasks.

Hardware/Software Design Approaches: Embedded software modeling using

UML diagrams. Hardware/software partitioning, co-design, co-synthesis, and

comparison of single vs. multi-processor architectures. Parallelism and modeling

tools like Papyrus/Cameo.

Activities: For a typical simple embedded system examples, students can plan

which functions should be implemented in hardware vs. software.

Embedded System Application Development: Phases of Embedded

Development Life Cycle (EDLC). Target architecture selection for control- and data-

dominated systems. Case studies: digital camera, adaptive cruise control, and

mobile phone software.

Activities: Group activity - Discuss examples of embedded systems in daily life.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question

Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),

Internal Examinations (40%).

Page 7 of 15

References:

1. Rajkamal. (2011). Embedded system: Architecture, programming, design. Tata

McGraw Hill.

2. Krishna, C. M., & Shin, K. G. (Year unknown). Real-time systems. McGraw-Hill

International Editions.

3. Das, L. B. (2013). Embedded systems: An integrated approach. Pearson.

4. Douglass, B. P. (2011). Real-time UML workshop for embedded systems.

Elsevier.

5. Staunstrup, J., & Wolf, W. (Year unknown). Hardware/software co-design

principles and practice. Springer.

6. Shibu, K. V. (Year unknown). Introduction to embedded systems. Tata McGraw

Hill.

 Description of CO PO PSO

CO1 Describe embedded architectures and tools. PO1(2)
PO2(2)
PO3(1)

PSO1(3)
PSO2(1)

CO2 Design embedded solutions with I/O and protocols. PO1(2)
PO2(1)
PO3(1)

PSO1(3)
PSO2(2)

CO3 Evaluate real-time requirements, scheduling, and

reliability.

PO1(3)
PO2(1)
PO3(2)

PSO1(2)
PSO2(3)

CO4 Model embedded designs with UML and co-design

methods.

PO1(2)
PO2(2)
PO3(1)

PSO1(3)
PSO2(2)

CO5 Develop embedded applications using EDLC and

case studies.

PO1(3)
PO2(2)
PO3(2)

PSO1(3)
PSO2(3)

Page 8 of 15

ET25102 Programming Embedded Systems L T P C

3 0 2 4

Course objectives:

 Learn fundamentals of C, Embedded C, and Python programming for embedded

applications.

 Gain proficiency with GNU C toolchain in Linux for coding, debugging, and

optimization.

 Develop skills in modular programming, libraries, and practical application

design.

Basic C Programming: Overview of C program development, structured

programming, data types, operators, and program control. Functions, arrays, and

fundamentals for building embedded applications.

Laboratory Session:

 Basic programming with 8-bit MCUs, C and Assembly coding on 8051/other

8-bit MCUs with peripherals, Functions, Arrays and menu driven code

Embedded C: Structured coding practices, modular development using headers

and ports, and object-oriented features in C. Real-time constraints handling through

delays, loop/hardware timeouts, and timing mechanisms.

Laboratory Session:

 I/O Programming with 8-bit Microcontrollers – interfacing with serial ports,

LCD, sensors, PWM, and motor control.

C Programming Tool-Chain in Linux: Compilation stages, preprocessing, and

GCC usage. Debugging with GDB, build automation using Make, profiling with gprof,

GNU binary utilities, and libraries for efficient development.

Laboratory Session:

 Write a simple C program that prints “ Hello World” and use GCC flags to

understand preprocessing, compilation, assembly and linking

 Write a program with nested loops or recursive function and use gprof to

analyze time spent in each function

Python Programming: Introduction, Parts of Python Programming Language,

Control Flow Statements, Functions, Strings, Lists, Dictionaries, Tuples and Sets.

Laboratory Session:

 Write a python code to perform the following:

1. a loop to simulate an LED blinking 10 times

2. if and else code to check the status of the temperature

3. Function code to simulate PWM by printing "ON" and "OFF" for a given

duty cycle

Modules, Packages and Libraries In Python: Creating and using

modules/packages. Practical applications using Python libraries for math, plotting,

GUI, imaging, and networking to support embedded solutions.

Laboratory Session:

 Python code to create a custom module with to perform a specific task like

ON/OFF

Page 9 of 15

 Program to plot simulated sensor data over time

 Program to send a data over a network socket

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question

Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),

Internal Examinations (40%).

References:

1. Deitel, P., & Deitel, H. (2016). C how to program (8th ed.). Pearson Education

Limited.

2. Pont, M. J. (2002). Embedded C. Addison-Wesley (an imprint of Pearson

Education).

3. Von Hagen, W. (2006). The definitive guide to GCC (2nd ed.). Apress Inc.

4. Gowrishankar, S., & Veena, A. (201?). Introduction to Python programming.

CRC Press, Taylor & Francis Group.

5. Mueller, J. P. (2018). Beginning programming with Python for dummies (2nd

ed.). John Wiley & Sons Inc.

 Description of CO PO PSO

CO1
Develop a C/Embedded C coding for

microcontrollers.

PO1(2)
PO2(1)
PO3(2)

PSO1(3)
PSO2(2)

CO2
Build a interface and program microcontroller

peripherals to validate functionality.

PO1(2)
PO2(1)
PO3(2)

PSO1(3)
PSO2(2)

CO3
Use GNU C toolchain in Linux to develop and

optimize embedded software.

PO1(2)
PO2(2)
PO3(2)

PSO1(3)
PSO2(3)

CO4
Implement microcontroller solutions in

C/Embedded C and Python.

PO1(3)
PO2(2)
PO3(2)

PSO1(3)
PSO2(3)

CO5
Design microcontroller applications with

C/Embedded C.

PO1(3)
PO2(2)
PO3(2)

PSO1(3)
PSO2(3)

Page 10 of 15

ET25103 Microcontroller Based System Design L T P C

3 0 0 3

Course objectives:

 Understand the architecture and programming of PIC and ARM/RISC
processors.

 Explore peripherals, memory management, and DSP implementation in
microcontrollers.

 Develop embedded system applications using PIC and ARM platforms.

PIC Microcontroller: Architecture, memory organization, addressing modes,
instruction set, PIC programming in Assembly & C I/O port, Data Conversion, RAM
& ROM Allocation, Timer programming, Programming practice in MP-LAB.

Activities: Install, configure, and create a simple project with a MPLAB IDE to learn
project structure.

Arm Architecture: Architecture, memory organization, addressing modes, The
ARM Programmer’s model Registers, Pipeline, Interrupts, Coprocessors, Interrupt
Structure.

Activities: Perform a coding exercise to configure a timer interrupt on ARM and
learn how the vector table directs execution of ISR.

Peripherals of PIC and Arm Microcontroller:

PIC: ADC, DAC and Sensor Interfacing Flash and EEPROM memories.

ARM: I/O Memory, EEPROM, I/O Ports, SRAM, Timer, UART Serial Communication
with PC, ADC/DAC Interfacing.

Activities: Perform a coding exercise to read analog input from a potentiometer or
sensor via ADC and control LED brightness using DAC/PWM output

ARM Microcontroller Programming: ARM general Instruction set, Thumb
instruction set, Introduction to DSP on ARM, Implementation example of Filters.

Activities : Perform a coding exercise with and without Thumb mode and to
implement moving average filter in C language.

Design with PIC and Arm Microcontrollers: PIC applications include gate signal
generation for converters/inverters, motor control, appliance control, frequency
measurement, and standalone data acquisition.

ARM examples cover basic ASM/C programs such as loops, lookup tables, block
copy, subroutines, and error detection with Hamming code.

Activities: Students collaboratively design and prototype small subsystems using
PIC and ARM microcontrollers, applying to specific application areas.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

Page 11 of 15

References:
1. Furber, S. (2010). ARM system on chip architecture. Addison Wesley.

2. Sloss, A. N., Symes, D., Wright, C., & Rayfield, J. (2007). ARM system

developer’s guide: Designing and optimizing system software. Elsevier.

3. Mazidi, M. A., McKinley, R. D., & Causey, D. (2008). PIC microcontroller and

embedded systems using assembly and C for PIC18. Pearson Education.

4. Iovine, J. (2000). PIC microcontroller project book. McGraw Hill.

5. Hohl, W. (Year unknown). ARM assembly language fundamentals and

techniques. CRC Press.

6. Kamal, R. (2012). Microcontrollers: Architecture, programming, interfacing & |

 system design. Pearson.

 Description of CO PO PSO

CO1 Explain PIC/ARM architecture and instruction sets
PO1(2)
PO2(2)
PO3(2)

PSO1(3)
PSO2(2)

CO2 Develop a program PIC/ARM in assembly and C.
PO1(2)
PO2(1)
PO3(3)

PSO1(3)
PSO2(2)

CO3 Compare 8-, 16-, and 32-bit RISC.
PO1(2)
PO2(2)
PO3(2)

PSO1(2)
PSO2(3)

CO4 Implement DSP applications on ARM processors.
PO1(3)
PO2(1)
PO3(3)

PSO1(3)
PSO2(3)

CO5 Design embedded applications using PIC/ARM.
PO1(3)
PO2(2)
PO3(3)

PSO1(3)
PSO2(3)

Page 12 of 15

ET25C01 IoT For Smart Systems L T P C

3 0 0 3

Course objectives:

 Understand IoT technologies, architectures, and communication methods.

 Learn about embedded processors, sensors, and IoT platforms.

 Explore IoT applications, data analytics, and security aspects.

Introduction to Internet of Things: Definition, elements, and characteristics of IoT.
Architectural stack, enabling technologies, challenges, and hardware platforms like
Arduino, Raspberry Pi, and ESP boards.
Activities: Students explore the definition, elements, architecture, and hardware
platforms of IoT by designing a small-scale IoT prototype using embedded boards.

IoT Architecture: Reference models and architectures, node structure (sensing,
processing, communication, power). Networking topologies, IoT standards, cloud
and fog computing, and Bluetooth-based solutions.
Activities: Case study to construct a IoT reference architectures and node structure

Protocols And Wireless Technologies for IoT : Overview of protocols: NFC,
SCADA, RFID, Zigbee, MIPI family, GSM/CDMA, LTE, and 5G small cells. Wireless
standards for IoT including WiFi, Bluetooth, ZigBee, UWB, LoRa, 6LoWPAN, Thread
vs. Matter, and proprietary systems.
Activities: Group activity to perform the selection of protocols for a typical use case.

IoT Subsystems: IoT services and attributes: analytics, dependability,
interoperability, security, and maintainability. Platforms for data analytics,
visualization, virtualization, and IoT application development with emphasis on
privacy and security.
Activities: Compare the performance of various data analytics & visualization tools.

Case Studies: Applications of IoT in industrial systems, smart homes, cities, grids,

vehicles, EV charging, agriculture, environment, productivity, and defense.

Activities: Each student group can prepare a short report/presentation on different

use cases.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question

Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),

Internal Examinations (40%).

References:

1. Bahga, A., & Madisetti, V. (2015). Internet of things: A hands-on approach.
Universities Press.

2. Greengard, S. (2015). The internet of things. The MIT Press.
3. Raj, P., & Raman, A. C. (2017). The internet of things: Enabling technologies,

platforms, and use cases. CRC Press.
4. Cirani, S., Ferrari, G., Picone, M., & Veltri, L. (2018). Internet of things:

Architectures, protocols and standards. Wiley.
5. Madisetti, V., & Bahga, A. (2014). Internet of things: A hands-on approach.

Page 13 of 15

 Description of CO PO PSO

CO1
Explain IoT fundamentals, ecosystem, and

technologies.

PO1(1)
PO2(2)
PO3(1)

PSO1(3)
PSO2(1)

CO2 Analyze IoT architectures, nodes, and standards.
PO1(2)
PO2(1)
PO3(1)

PSO1(3)
PSO2(1)

CO3 Evaluate IoT protocols, wireless tech, and trends.
PO1(3)
PO2(1)
PO3(2)

PSO1(2)
PSO2(3)

CO4
Integrate IoT subsystems in application

development.

PO1(2)
PO2(1)
PO3(2)

PSO1(3)
PSO2(2)

CO5 Examine IoT case studies for innovative solutions.
PO1(3)
PO2(3)
PO3(2)

PSO1(1)
PSO2(3)

Page 14 of 15

ET25104 VLSI Design and Reconfigurable Architecture L T P C

3 1 0 4

Course Objectives

 Learn fundamentals of sequential circuits, CMOS concepts, and IC fabrication.

 Understand reconfigurable processors, SoC architectures, and analog VLSI

design.

 Gain practical skills in HDL programming and digital system modeling.

Introduction to Advanced Digital System Design: Modeling and design of

synchronous and asynchronous sequential circuits. Includes vending machine

controller design, hazards (static, dynamic, essential), and methods for hazard-free

circuit implementation.

Activities: Perform a simulation to design combination circuits using ModelSim /

Xilinx Vivado / Quartus and verify with testbench.

CMOS Basics & IC Fabrication: MOSFET scaling, transistor models, CMOS logic

design, BiCMOS, low-power techniques, and fabrication methods. Emphasizes stick

diagrams, layout design rules, and IC implementation basics.

Activities: Study MOSFET logic design, scaling effects, and apply stick diagrams

with layout rules to connect theory and fabrication.

ASIC and Reconfigurable Processor and Soc Design: ASIC design flow,

programmable ASICs, reconfigurable processor architecture, SoC overview,

embedded FPGA, and applications such as DC motor control.

Activities: Compare traffic light controller implementation across ASIC simulation,

FPGA/reconfigurable processor, and SoC co-design.

Analog VLSI Design: CMOS op-amp design (two/three-stage), high-

speed/frequency op-amps, Super MOS, analog primitive cells, and introduction to

FPAA concepts.

Activities : Design a two-stage CMOS op-amp using a circuit simulator and

measure its key parameters.

HDL programming : VHDL-based digital design: structural, dataflow, behavioral

modeling. Logic synthesis and simulation for adders, multipliers, ALUs, shift

registers, and test benches.

Activities: Design a 4-bit ALU in VHDL with add, subtract, increment, AND, OR

operations, and verify using an automated test bench.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question

Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),

Internal Examinations (40%).

Page 15 of 15

References:

1. Givone, D. G. (2002). Digital principles and design. Tata McGraw Hill.

2. Nurmi, J. (Ed.). (2007). Processor design system-on-chip computing for ASICs

and FPGAs. Springer.

3. Gaillardon, P.-E. (2015). Reconfigurable logic: Architecture, tools, and

applications (1st ed.). CRC Press.

4. Ismail, M., & Fiez, T. (Year unknown). Analog VLSI signal and information

processing. McGraw Hill International Editions.

5. Dally, W. J., Harting, C., & Aamodt, T. M. (2015). Digital design using VHDL: A

systems approach. Cambridge University Press.

 Description of CO PO PSO

CO1
Model synchronous/asynchronous circuits and

remove hazards.

PO1(2)
PO2(1)
PO3(2)

PSO1(3)
PSO2(2)

CO2
Examine CMOS issues, low-power methods, and

layouts.

PO1(3)
PO2(1)
PO3(2)

PSO1(2)
PSO2(3)

CO3 Evaluate ASIC vs. reconfigurable SoC architectures.
PO1(3)
PO2(2)
PO3(1)

PSO1(2)
PSO2(3)

CO4
Implement analog VLSI blocks for high-frequency

use.

PO1(2)
PO2(1)
PO3(3)

PSO1(1)
PSO2(2)

CO5 Simulate and verify digital circuits with HDL.
PO1(2)
PO2(2)
PO3(2)

PSO1(3)
PSO2(2)

