ANNA UNIVERSITY
NON-AUTONOMOUS COLLEGE
AFFILIATED TO ANNA UNIVERSITY
M.E., EMBEDDED SYSTEM TECHNOLOGIES
REGULATIONS 2025

PROGRAMME OUTCOMES (POs)

An ability to independently carry out research / investigation and

PO1 .
development work to solve practical problems.

PO2 An ability to write and present a substantial technical report / document.

Students should be able to demonstrate a degree of mastery in embedded

PO3 .
system technologies.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1 | Graduates will be proficient in integrating hardware, software, and
networking technologies to deliver optimized embedded solutions.

PSO2 | Graduates will be able to apply advanced embedded system technologies
to drive research, foster innovation, and support product development.

Page 1 of 15

ANNA UNIVERSITY, CHENNAI
POST GRADUATE CURRICULUM (NON.AUTONOMOUS AFFILIATED INSTITUTIONS)

PROGRESS THROUGH KNOWLEDGE

Programme: M.E., Embedded System Technologies Regulations: 2025

Abbreviations:

BS — Basic Science (Mathematics, L — Laboratory Course
Physics,
Chemistry)
ES - Engineering Science (General (G), T — Theory
Programme Core (PC), Programme
Elective (PE))
SD — Skill Development LIT — Laboratory Integrated Theory
SL — Self Learning PW — Project Work

OE - Open Elective TCP — Total Contact Period(s)

Semester |
S. | Course Periods
. _ ’ .
NO. code Course title Type Lper_lrveep TCP Credits| Category

1. |ET25101 Design of Embedded

Systems T |3|0|0] 3 3 |ES(PC)

2. |ET25102 [Programming Embedded

LIT|3]02| 5 4 ES (PC
Systems (PC)

3. |ET25103 [Microcontroller Based

System Design T [3]0]|0] 3 3 |ES(PC)

4. |ET25CO01 ||oT for Smart Systems T |3|0]|0] 3 3 |ES(PC)

5. |ET25104 |VLSI Design and

Reconfigurable Architecture T 311104 4 ES (PC)

6. | ET25105 rrechnical Seminar - |ojoj2]2]| 1 | sD

Total Credits | 20 | 18

Page 2 of 15

Semester Il

S. | Course _ Periods _
No.| Code Course title Type| Per Week |TCP| Credits| Category
L|T| P
1. Real Time Operating T (3 (1] 0 4 4 ES (PC)
System
2. Embedded System T (3 (0] O 3 3 ES (PC)
Networking
3. Embedded Control T (3 (1] 0 4 4 ES (PC)
System
4. Programme Elective - | T 0| 0| 3|3 ES (PC)
S. Industry Oriented Course | - |1]00 1 1 SD
6. Embedded System L [0 |0] 4 4 2 ES (PC)
Laboratory — |
7. Industrial Training N N R -- SD
8. Self Learning Course i ol B I SD
Total Credits | 19 | 20
Semester lll
S. |Course) Periods]
No. | code Course Title Type Per Week |Tcp|Credits | Category
L|T| P
1. Programme Elective |l T 30| O 3 3 ES (PE)
2. Programme Elective Il T 30| O 3 3 ES (PE)
3. Programme Elective IV T 3/]0| O 3 3 ES (PE)
4. Open Elective 3]0 O 3 3 -
5. Industry Oriented -- 1/0| O 1 1 SD
Course Il
6. Project Work | 0| 0|12 12 6 SD
Total Credits | 25 19
Semester IV
S. |Course) Periods)
NO. | Code Course Title Type | Per Week | TCcp |Credits| Category
LI T| P
1. Project Work I — |00 24 24 12 SD
Total Credits 24 12

Page 3 of 15

Programme Elective Courses (PE)

S Course Periods Total
Nc; code Course title Per week |Contact Credits
' L | T| P |Periods
1. Wireless And Mobile 3]10fO0
o 3 3

Communication

2. Data Driven Embedded 3]10(0 3 3
Systems

3. Advanced Embedded 3]10fO0 3 3
Processor
DSP Based System Design 3

5. Automotive Embedded 3 10O 3
System

6. Embedded Linux 3]10fO0 3 3

7. Autonomous Vehicle 310]0 3 3

8. Computer Vision 3 (00 3 3

9. Digital Twin 30O 3 3

10. Machine Learning and Deep 3 10O 3 3
Learning

11. Wireless Sensor Networks 3 100 3 3

12. Embedded Computing 3 (00 3 3

13. Embedded Systems Security | 3 | 0| O 3 3

14. Robotics and Automation 31010 3 3

15. Reconfigurable Processor 3]10(O0 3 3
and SoC Design

16. MEMS and NEMS 3]10]O0 3 3
Technology

17. Embedded System for Bio 3]10|O0 3 3
Medical Applications

18. Electric vehicle and power 3]10fO0 3 3
management.

19. Edge Data Analytics 3 (0]0 3 3

20. Python Programming for 3]10(0 3 3
Machine Learning

21. Embedded Device Driver 3]10fO0 3 3
Programming

Page 4 of 15

Semester |

Page 5 of 15

ET25101 Design of Embedded Systems

'_
o|H
o |

C
3

Course objectives:

e Understand embedded architectures, components, and communication

protocols.

e Analyze real-time requirements and hardware/software co-design
approaches.

¢ Design and develop embedded applications using modeling tools and EDLC
frameworks.

Introduction to Embedded Systems: Features of embedded systems, processor
selection, memory organization, timers, watchdogs, and RTC. Development tools
(IDE, assembler, linker, debugger, emulator) and basics of functional safety
standards.

Activities: Install, configure, and create a simple project with a basic IDE to learn
project structure.

Communication Protocols: I/O ports, buses, interrupts, and service mechanisms.
Serial protocols (RS232, RS485-MODBUS, USB, 12C, CAN) and wireless protocols
(Wi-Fi, Bluetooth, ZigBee). Introduction to device drivers.

Activities: Write a pseudo-code or library examples of initializing and using a
peripheral (LED, LCD, sensor)

Real Time Systems: Structure and characteristics of real-time systems, run-time
estimation, task scheduling, and performance measures. Fault tolerance, reliability,
evaluation methods, and clock synchronization.

Activities: Design a simple traffic light controller or temperature monitoring system
with periodic tasks.

Hardware/Software Design Approaches: Embedded software modeling using
UML diagrams. Hardware/software partitioning, co-design, co-synthesis, and
comparison of single vs. multi-processor architectures. Parallelism and modeling
tools like Papyrus/Cameo.

Activities: For a typical simple embedded system examples, students can plan
which functions should be implemented in hardware vs. software.

Embedded System Application Development: Phases of Embedded
Development Life Cycle (EDLC). Target architecture selection for control- and data-
dominated systems. Case studies: digital camera, adaptive cruise control, and
mobile phone software.

Activities: Group activity - Discuss examples of embedded systems in daily life.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

Page 6 of 15

References:

1. Rajkamal. (2011). Embedded system: Architecture, programming, design. Tata
McGraw Hill.

2. Krishna, C. M., & Shin, K. G. (Year unknown). Real-time systems. McGraw-Hill

International Editions.

. Das, L. B. (2013). Embedded systems: An integrated approach. Pearson.

4. Douglass, B. P. (2011). Real-time UML workshop for embedded systems.
Elsevier.

5. Staunstrup, J., & Wolf, W. (Year unknown). Hardware/software co-design
principles and practice. Springer.

6. Shibu, K. V. (Year unknown). Introduction to embedded systems. Tata McGraw
Hill.

w

Description of CO PO PSO
CO1 | Describe embedded architectures and tools. PO1(2) | PSO1(3)
PO2(2) | PSO2(1)
PO3(1)
CO2 | Design embedded solutions with /O and protocols. PO1(2) | PSO1(3)
PO2(1) | PSO2(2)
PO3(1)
CO3 | Evaluate real-time requirements, scheduling, and | PO1(3) | PSO1(2)
reliability. PO2(1) | PSO2(3)
PO3(2)
CO4 | Model embedded designs with UML and co-design | PO1(2) | PSO1(3)
methods. PO2(2) | PSO2(2)
PO3(1)
CO5 | Develop embedded applications using EDLC and | PO1(3) | PSO1(3)
case studies. PO2(2) | PSO2(3)
PO3(2)

Page 7 of 15

—

ET25102 Programming Embedded Systems

T |P|C
012 4

Course objectives:

e Learn fundamentals of C, Embedded C, and Python programming for embedded
applications.

e Gain proficiency with GNU C toolchain in Linux for coding, debugging, and
optimization.

. Develop skills in modular programming, libraries, and practical application
design.

Basic C Programming: Overview of C program development, structured
programming, data types, operators, and program control. Functions, arrays, and
fundamentals for building embedded applications.
Laboratory Session:
e Basic programming with 8-bit MCUs, C and Assembly coding on 8051/other
8-bit MCUs with peripherals, Functions, Arrays and menu driven code

Embedded C: Structured coding practices, modular development using headers
and ports, and object-oriented features in C. Real-time constraints handling through
delays, loop/hardware timeouts, and timing mechanisms.
Laboratory Session:
e 1/O Programming with 8-bit Microcontrollers — interfacing with serial ports,
LCD, sensors, PWM, and motor control.

C Programming Tool-Chain in Linux: Compilation stages, preprocessing, and
GCC usage. Debugging with GDB, build automation using Make, profiling with gprof,
GNU binary utilities, and libraries for efficient development.
Laboratory Session:
e Write a simple C program that prints “ Hello World” and use GCC flags to
understand preprocessing, compilation, assembly and linking
e Write a program with nested loops or recursive function and use gprof to
analyze time spent in each function

Python Programming: Introduction, Parts of Python Programming Language,
Control Flow Statements, Functions, Strings, Lists, Dictionaries, Tuples and Sets.
Laboratory Session:
e Write a python code to perform the following:

1. aloop to simulate an LED blinking 10 times

2. if and else code to check the status of the temperature

3. Function code to simulate PWM by printing "ON" and "OFF" for a given

duty cycle

Modules, Packages and Libraries In Python: Creating and using
modules/packages. Practical applications using Python libraries for math, plotting,
GUI, imaging, and networking to support embedded solutions.
Laboratory Session:
e Python code to create a custom module with to perform a specific task like
ON/OFF

Page 8 of 15

Program to plot simulated sensor data over time
Program to send a data over a network socket

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

References:

1.

Deitel, P., & Deitel, H. (2016). C how to program (8th ed.). Pearson Education
Limited.

2. Pont, M. J. (2002). Embedded C. Addison-Wesley (an imprint of Pearson
Education).
3. Von Hagen, W. (2006). The definitive guide to GCC (2nd ed.). Apress Inc.
4. Gowrishankar, S., & Veena, A. (2017?). Introduction to Python programming.
CRC Press, Taylor & Francis Group.
5. Mueller, J. P. (2018). Beginning programming with Python for dummies (2nd
ed.). John Wiley & Sons Inc.
Description of CO PO PSO
Develop a C/Embedded C coding for PO1(2) PSO1(3)
CO1 . PO2(1)
microcontrollers. PO3(2) PS02(2)
Build a interface and program microcontroller PO1(2) PS0O1(3)
CO2 . . : : PO2(1)
peripherals to validate functionality. PO3(2) PS0O2(2)
Use GNU C toolchain in Linux to develop and PO1(2) PSO1(3)
CO3 - PO2(2)
optimize embedded software. PO3(2) PS0O2(3)
co4 Implement microcontroller solutions in Eg;g; PS0O1(3)
C/Embedded C and Python. PO3(2) PSO2(3)
CO5 Design microcontroller applications with Eg;(g) PS0O1(3)
C/Embedded C. P03§2; PSO2(3)

Page 9 of 15

ET25103 Microcontroller Based System Design

—
o+
o

C
3

Course objectives:

e Understand the architecture and programming of PIC and ARM/RISC
processors.

e Explore peripherals, memory management, and DSP implementation in
microcontrollers.

e Develop embedded system applications using PIC and ARM platforms.

PIC Microcontroller: Architecture, memory organization, addressing modes,
instruction set, PIC programming in Assembly & C 1/O port, Data Conversion, RAM
& ROM Allocation, Timer programming, Programming practice in MP-LAB.

Activities: Install, configure, and create a simple project with a MPLAB IDE to learn
project structure.

Arm Architecture: Architecture, memory organization, addressing modes, The
ARM Programmer’s model Registers, Pipeline, Interrupts, Coprocessors, Interrupt
Structure.

Activities: Perform a coding exercise to configure a timer interrupt on ARM and
learn how the vector table directs execution of ISR.

Peripherals of PIC and Arm Microcontroller:
PIC: ADC, DAC and Sensor Interfacing Flash and EEPROM memories.

ARM: I/O Memory, EEPROM, I/O Ports, SRAM, Timer, UART Serial Communication
with PC, ADC/DAC Interfacing.

Activities: Perform a coding exercise to read analog input from a potentiometer or
sensor via ADC and control LED brightness using DAC/PWM output

ARM Microcontroller Programming: ARM general Instruction set, Thumb
instruction set, Introduction to DSP on ARM, Implementation example of Filters.

Activities : Perform a coding exercise with and without Thumb mode and to
implement moving average filter in C language.

Design with PIC and Arm Microcontrollers: PIC applications include gate signal
generation for converters/inverters, motor control, appliance control, frequency
measurement, and standalone data acquisition.

ARM examples cover basic ASM/C programs such as loops, lookup tables, block
copy, subroutines, and error detection with Hamming code.

Activities: Students collaboratively design and prototype small subsystems using
PI1C and ARM microcontrollers, applying to specific application areas.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

Page 10 of 15

References:

1.

Furber, S. (2010). ARM system on chip architecture. Addison Wesley.

2. Sloss, A. N., Symes, D., Wright, C., & Rayfield, J. (2007). ARM system
developer’s guide: Designing and optimizing system software. Elsevier.
3. Mazidi, M. A., McKinley, R. D., & Causey, D. (2008). PIC microcontroller and
embedded systems using assembly and C for PIC18. Pearson Education.
4. lovine, J. (2000). PIC microcontroller project book. McGraw Hill.
5. Hohl, W. (Year unknown). ARM assembly language fundamentals and
techniques. CRC Press.
6. Kamal, R. (2012). Microcontrollers: Architecture, programming, interfacing & |
system design. Pearson.
Description of CO PO PSO
POT(2) | pso1(3)
CO1 Explain PIC/ARM architecture and instruction sets PO2(2)
PS02(2)
PO3(2)
POT(2)| pso1(3)
CO2 Develop a program PIC/ARM in assembly and C. PO2(1)
PS02(2)
PO3(3)
PO1(2)
CO3 | Compare 8-, 16-, and 32-bit RISC. PO2(2) ﬁgg;g;
PO3(2)
PO1(3) | pso1(3)
CO4 Implement DSP applications on ARM processors. PO2(1)
PS0O2(3)
PO3(3)
POT3) | pso1(3)
CO5 Design embedded applications using PIC/ARM. PO2(2)
PO3(3) PSO2(3)

Page 11 of 15

ET25C01 loT For Smart Systems L| T |P|C

Course objectives:
e Understand loT technologies, architectures, and communication methods.
e Learn about embedded processors, sensors, and loT platforms.
e Explore loT applications, data analytics, and security aspects.

Introduction to Internet of Things: Definition, elements, and characteristics of loT.
Architectural stack, enabling technologies, challenges, and hardware platforms like
Arduino, Raspberry Pi, and ESP boards.

Activities: Students explore the definition, elements, architecture, and hardware
platforms of IoT by designing a small-scale IoT prototype using embedded boards.

loT Architecture: Reference models and architectures, node structure (sensing,
processing, communication, power). Networking topologies, IoT standards, cloud
and fog computing, and Bluetooth-based solutions.

Activities: Case study to construct a loT reference architectures and node structure

Protocols And Wireless Technologies for IoT : Overview of protocols: NFC,
SCADA, RFID, Zigbee, MIPI family, GSM/CDMA, LTE, and 5G small cells. Wireless
standards for loT including WiFi, Bluetooth, ZigBee, UWB, LoRa, 6LoWPAN, Thread
vs. Matter, and proprietary systems.

Activities: Group activity to perform the selection of protocols for a typical use case.

loT Subsystems: IoT services and attributes: analytics, dependability,
interoperability, security, and maintainability. Platforms for data analytics,
visualization, virtualization, and loT application development with emphasis on
privacy and security.

Activities: Compare the performance of various data analytics & visualization tools.

Case Studies: Applications of loT in industrial systems, smart homes, cities, grids,
vehicles, EV charging, agriculture, environment, productivity, and defense.
Activities: Each student group can prepare a short report/presentation on different
use cases.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

References:

1. Bahga, A., & Madisetti, V. (2015). Internet of things: A hands-on approach.
Universities Press.

2. Greengard, S. (2015). The internet of things. The MIT Press.

3 Raj, P., & Raman, A. C. (2017). The internet of things: Enabling technologies,
platforms, and use cases. CRC Press.

4. Cirani, S., Ferrari, G., Picone, M., & Veltri, L. (2018). Internet of things:
Architectures, protocols and standards. Wiley.

5. Madisetti, V., & Bahga, A. (2014). Internet of things: A hands-on approach.

Page 12 of 15

Description of CO PSO
CO1 Explain loT fundamentals, ecosystem, and PSO1(3)
technologies. PSO2(1)
_ PSO1(3)
CO2 Analyze loT architectures, nodes, and standards. PS02(1)
: PSO1(2)
CO3 Evaluate loT protocols, wireless tech, and trends. PS02(3)
co4 Integrate loT subsystems in application PS0O1(3)
development. PS02(2)
, . . . : PSO1(1)
CO5 Examine loT case studies for innovative solutions. PS02(3)

Page 13 of 15

ET25104 VLSI Design and Reconfigurable Architecture L|T|IP|C

Course Objectives
e Learn fundamentals of sequential circuits, CMOS concepts, and IC fabrication.
e Understand reconfigurable processors, SoC architectures, and analog VLSI
design.
e Gain practical skills in HDL programming and digital system modeling.

Introduction to Advanced Digital System Design: Modeling and design of
synchronous and asynchronous sequential circuits. Includes vending machine
controller design, hazards (static, dynamic, essential), and methods for hazard-free
circuit implementation.

Activities: Perform a simulation to design combination circuits using ModelSim /
Xilinx Vivado / Quartus and verify with testbench.

CMOS Basics & IC Fabrication: MOSFET scaling, transistor models, CMOS logic
design, BICMOS, low-power techniques, and fabrication methods. Emphasizes stick
diagrams, layout design rules, and IC implementation basics.

Activities: Study MOSFET logic design, scaling effects, and apply stick diagrams
with layout rules to connect theory and fabrication.

ASIC and Reconfigurable Processor and Soc Design: ASIC design flow,
programmable ASICs, reconfigurable processor architecture, SoC overview,
embedded FPGA, and applications such as DC motor control.

Activities: Compare traffic light controller implementation across ASIC simulation,
FPGA/reconfigurable processor, and SoC co-design.

Analog VLSI Design: CMOS op-amp design (two/three-stage), high-
speed/frequency op-amps, Super MOS, analog primitive cells, and introduction to
FPAA concepts.

Activities : Design a two-stage CMOS op-amp using a circuit simulator and
measure its key parameters.

HDL programming : VHDL-based digital design: structural, dataflow, behavioral
modeling. Logic synthesis and simulation for adders, multipliers, ALUs, shift
registers, and test benches.

Activities: Design a 4-bit ALU in VHDL with add, subtract, increment, AND, OR
operations, and verify using an automated test bench.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (10%), Review of Question
Papers (IES, GATE, SSC Questions) (20%), Projects (20%), Flipped Class (5%),
Internal Examinations (40%).

Page 14 of 15

References:

1.

Givone, D. G. (2002). Digital principles and design. Tata McGraw Hill.

2. Nurmi, J. (Ed.). (2007). Processor design system-on-chip computing for ASICs
and FPGAs. Springer.
3. Gaillardon, P.-E. (2015). Reconfigurable logic: Architecture, tools, and
applications (1st ed.). CRC Press.
4. Ismail, M., & Fiez, T. (Year unknown). Analog VLSI signal and information
processing. McGraw Hill International Editions.
5. Dally, W. J., Harting, C., & Aamodt, T. M. (2015). Digital design using VHDL: A
systems approach. Cambridge University Press.
Description of CO PO PSO
o PO1(2)
Model synchronous/asynchronous circuits and PS0O1(3)
co1 remove hazards PO2(1) PS0O2(2)
' PO3(2)
Examine CMOS issues, low-power methods, and PO1(3) PSO1(2)
COZ 1 ayouts PO2(1) | bso2(3)
' PO3(2)
PO1(3) PSO1(2)
CO3 | Evaluate ASIC vs. reconfigurable SoC architectures. | PO2(2)
PSO2(3)
PO3(1)
o PO1(2)
Implement analog VLSI blocks for high-frequency PSO1(1)
co4 use PO2(1) PS02(2)
) PO3(3)
PO1(2)
CO5 | Simulate and verify digital circuits with HDL. Po2(2) | PSO1E3)
PO3(2) PS02(2)

Page 15 of 15

